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We study the behavior of three "vicious" random walkers which diffuse freely in 
one dimension with arbitrary diffusivities b 2, b~, b 2, except that their paths may 
not cross. The full distribution function is calculated exactly in the continuum 
limit; the exponent ~3 governing the decay of the probability R(~ 3) ~ 1In ~3 of a 
simultaneous reunion of all three walkers after n steps is found to vary 
continuously according to ~h 3 = 1 +n/cos l{b~/[(b~+b~)(b~+b2) 1/2 ~ }. This 
variation has consequences for various interracial wetting transitions in (1 + 1) 
dimensions. It may also be related heuristically to the marginality of direct 
interface-wall interactions decaying as Wo/l 2 in the intermediate fluctuation 
regime of (1 + 1)-dimensional wetting, where exponents varying continuously 
with Wo have recently been found. 

KEY WORDS: Random walkers; wetting transitions; vicious drunks; con- 
tinuously variable exponents; reunions. 

1. I N T R O D U C T I O N  

C o n s i d e r  p r a n d o m  walkers  wh o  walk  on  a line, the  c o o r d i n a t e  of the j t h  
wa lke r  be ing  xj ( j  = 1, 2 ..... p).  F o l l o w i n g  ref. 1 (to be  referred to as I),  we 
m a y  suppose ,  for concre teness ,  tha t  at  each t ick of a c lock a n  i so la ted  

walker  takes  a s tep of l eng th  a to the left or  the r ight  wi th  s ta t is t ical  weight  

w f  = w f  or  rests o n  the  same  site wi th  weight  w ~  The  m e a n  squa re  step 
l eng th  

b 2 = 2 w f  a2/(w ~ -I- 2w + ) (1.1) 

specifies the diffusivi ty b 2 of the j t h  walker .  W h e n  all p walkers  are p resen t  

we suppose  (1) tha t  at  each  tick of the  c lock a wa lker  is r a n d o m l y  chosen  to 
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move (or to rest); all walkers move on the same lattice of sites l, located at 
x = la. (One may consider also a "lock-step" dynamics: see I.) 

Vicious walkers ~1~ are short-sighted, experiencing no interactions when 
on different sites; however, when two arrive on the same site, they shoot 
each other dead, leaving two fewer walkers! (After such a death the whole 
process may be regarded as terminated.) The obvious questions are: What 
is the probability that all p walkers survive for n steps starting from some 
initial configuration x j=  xj, 0 ( j =  1 ..... p)?; What is the properly weighted 
spatial distribution function or partition function 

Q~p)(x, Xo), x = (X 1 ..... Xp), X0 = (Xl,0 ..... Xp,o) (1.2) 

of the p survivors after n steps? Finally, it was shown in ] that, for 
applications to a variety of physical problems in two spatial dimensions, 
the most interesting question relates to the probability of a reunion in 
which all walkers start close to (but not at) the origin, say, at spacing a 
apart, and after n steps all meet close together again at a mean position s 
The probability of a reunion anywhere was found to decay as 

R(,, p) ,~ Cp/n ~' when n --* oo (1.3) 

and it was shown (~) that the exponent ~ determined the order of a variety 
of interfacial wetting transitions, the existence and nature of the singular 
corrections to various commensurate-incommensurate transitions, and the 
decay of correlations in ordered states. Typically, the trajectories, xj(n) of 
the individual walkers in the (x, n) plane represent fluctuating interfaces 
between distinct phases or domains in two spatial dimensions (x, y). The 
diffusivity b 2 corresponds to the interfacial stiffness -~(T) of the j t h  interface 
or domain wall. (t'2) 

In I these problems were solved and analyzed in detail for the case ofp  
similar vicious walkers with b I = b (all j). Specifically, it was shown by the 
method of images applied to an associated diffusion problem that the 
overall distribution was given explicitly by 

Q~p~(x, x0) = ~ (-)1~1 QO(x ' r~Xo) (1.4) 

where ~x 0 denotes a permutation of parity [z~j =0 ,  1 of the initial coor- 
dinates (X~,o, X2,o,..., Xp.o), while the noninteracting or "harmless" overall 
distribution is 

P 
0 Qn(x, Xo)= l-I Q~ Xj, o) (1.5) 

j = l  
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in which 

Q~ Xo) ~ e ~'e- (x ~o)2/2o2,/(2~ b2 n)1/2 (1.6) 

represents the distribution for a single, isolated walker of diffusivity b 2 and 
total step weight e -~=-w~  + (where a corresponds to the reduced 
interfacial tension Z/kB T). From (1.4) one can obtain (1'3'4) the result 

0p = 1(p2-  1) = 0, 3, 4, 71,... for p = 1, 2, 3, 4,... (1.7) 

for the reunion exponent for p similar walkers. A variety of other explicit 
formulas follow. (1) Attention should also be drawn to recent work by 
Duplantier, (5) who shows how to treat a range of intersection problems for 
similar random walkers in general dimensionalities by renormalization 
group methods. 2 

Two other vicious walk problems were addressed in I. The first 
concerned p walkers in the presence of a rigid absorbing wall (or "death- 
dealing cliff') fixed at the origin x = 0, the walkers being confined to, say, 
x > 0. The analogous reunion problem for walkers starting and finishing 
close to the wall (i.e., 2 = 0 )  was solved for p =  1 and 2 similar walkers 
(bj = b), leading to the exponents 

~w=-32, O w = 5  (1.8) 

and corresponding expressions for the dependence of the decay amplitudes 
C W on the actual initial and final conditions. 

The second problem concerned dissimilar walkers with distinct dif- 
fusivities b 2. This is clearly of interest since, in the absence of some special 
physical symmetry, successive interfaces separating different spatially exten- 
ded phases A, B, C,..., will normally have different tensions and stiffnesses. 
Indeed, one might reasonably regard a rigid, fixed absorbing wall as simply 
an infinitely stiff interface to be described by a vicious walker of vanishing 
diffusivity, b~ ~ 0. 

Now the method of images used in I fails for dissimilar walkers. 
However, progress can be made for p = 2 walkers if one first goes to the 
continuum or diffusive limit, which, in fact, suffices for the asymptotic 

2 See also the references in Duplantier 's  article (5) which list recent work by G .F .  Lawler 
(Duke University) treating the probability of intersection of three walkers in d = 3  
dimensions, which is a borderline for this problem. D. ben-Avraham, J. Chem. Phys. 88:941 
(1988), quotes, in his Eq. (7), a result for the survival probability for three vicious walkers 

/ . 
equivalent to our (3.6) in the restricted case b l = b 3 ;  he thanks Frangols Leyvraz for 
assistance. We are grateful to Professor S. Redner for telling us of this work. 
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properties of interest to us. In this limit the distribution function for the set 
of p walkers satisfies the equation 

OQ(p) p ~2Q(p) 
0-----~(x, t)=�89 ~ b 2 ~?----~j2 ~ (1.9) 

j = l  

where, for the sake of convention, we have replaced n by t [and Q(,p)(x) by 
Q(p)(x, t)], while 

p 

00tot = Z 00J with e - ' J = w ~  + (1.10) 
j = l  

The solution for a single, isolated walker the standard form on the right 
side of (1.6). The character of viciousness is then embodied in the constraint 

X l ~ X 2 ~ X 3 ~  "'" ~ X p  (1.11) 

with boundary conditions, for all t, 

Q(x,t)--*0 as x j ~ x j +  1 ( j = l ,  2 , . . . , p -1 )  (1.12) 

For p = 2 walkers the change of coordinates from (Xl, x2) to (x, 92) with 

x==-Xl2=X2-Xl)O,  92=�89 +(bl /bz)x2]  (1..13) 

separates the diffusion equation (1.9); the "external walker," with coor- 
dinate ~, diffuses freely; the "internal walker," with coordinate x, can be 
dealt with by images. (1) The result may be written 

Q(Z)(x, Xo, t ) =  
exp[ - (001 -1- 02) t-] exp[ - (92 - 920)2/g~2t] 

2~52t 

( x - x ~  (1.14) 
- xx~ exp [ 4/~2 t J 

where the mean diffusivity is just 

1 2  52=~(b~ +b~) (1.15) 

To find the probability of a reunion anywhere, one should integrate on 92, 
which removes a factor t-1/2. Then, replacing t by n and letting n ~ ov at 
fixed x and Xo yields the form (1.3) with ~2 = 3/2 and 

C 2 = ( x  2 - X l ) ( X 2 ,  0 - xl,o)/27~l/2D 3 ( 1 . 1 6 )  
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Thus, the exponent ~b is the same as for two similar walkers: see (1.7). 
Likewise, the dependence of the amplitude C2 on x and xo is found to be 
identical up to a factor. (4) Furthermore, if one lets b~ ~ 0, so that the first 
walker becomes a rigid wall at xl = 0, one recaptures from (1.14) the exact 
(continuum) result for a wall plus one walker with ~ =  3/2, as in (1.8), 
and the correct value of the amplitude C w -  C2. 

The case of p = 3  dissimilar walkers, however, presents a harder 
problem which was not addressed in I. It was observed, however, that the 
behavior as a function of bl, bz, and b3 had to be more complex, since the 
exponent ff for three similar walkers takes the value 

1~3(b I =- 6 2 = b 3 > 0) = 4 (1.17) 

as shown in (1.7), whereas if b 1 ~ 0  so as to yield a rigid wall and two 
similar walkers, one has 

4,3(b, : 0; b2 = b3 > 0 )  = ~ = 5 ( 1 . 1 8 )  

[see (1.8)]. To this we can add 

ff3(b~, b3 > 0; b2 = 0) = 2 ~ v =  3 (1.19) 

since, if the middle walker ceases to diffuse, as b2 ~ 0, the two outer 
walkers clearly become decoupled and one is left with two separate 
problems of a walker plus a fixed wall. 

These contrasting results raise several questions: Must if3 always be an 
integer? Can it have a value less than 2? Such a low value would imply a 
continuous wetting transition for the unbinding of one interface A IIID 
between phases (~,z) A and D into three distinct interfaces A]B, BI C, and 
CtD, where B and C are intermediate coexisting phases. Can ~3 depend 
continuously on the bj? And, if so, precisely how? In this paper we analyze 
and fully solve (for the continuum limit) the problem of three dissimilar 
vicious walkers. In particular, we obtain an explicit formula for 
~ 3 ( b l ,  b2, b3) [see (3.1) below] which shows that ~3 varies continuously, a 
surprising result! The limiting cases (1.17)-(1.19) are trivially reproduced 
by the formula. The general expression for the amplitude 
C3(x, Xo, bt, b2, b3) likewise reproduces the differing forms found 
previously (1~ for the cases (1.17)-(1.19). These results follow from the 
expression (2.28) below for the full distribution Q(3~(x, Xo; t). 

2. THE D I S T R I B U T I O N  FOR THREE D I S S I M I L A R  W A L K E R S  

As a first step in the analysis of three vicious walkers we may define 
G(x, xo; t) via 

Q(3)(x, Xo; t ) =  e*'~ Xo; t) (2.1) 
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so that G satisfies the anisotropic equation (1.9) with Oto t ~ - "  0. If we set 

xj=bjyj, Xj.o=bjyj.o ( j =  1,2, 3) (2.2) 

then G-= G(y, y0;t) solves the spatially isotropic diffusion equation 

OG=�89 ~ UG 
c3----t- j=, ~ - �89 (2.3) 

The condition that the walkers not meet, embodied in (1.11) and (1.12), 
requires 

blyl <~b2y2 <<.b2Y3 (2.4) 

with G(yt, Yz, Y3; t) ~ 0 for all t as y approaches the planes 

(+) 

( - )  

Here fi+ and f i  are unit 
explicitly, we have 

fir Y ~ -b2 y2+b3 y3=O (2.5) 

f i -Y ~: bl y l - b 2 Y 2 = O  (2.6) 

vectors normal to the planes ( + )  and ( - ) ;  

fi = (b l , - b2 ,0 ) / (b2+b2)  m, f i + = ( 0 , - b 2 ,  b3)/(b2+b32) m- (2.7) 

These two bounding planes intersect and include an angle 
O(bl, b2, b3) given by 

COS O = n +" n = 6 2 / [ ( 6  2 -[- 62)(6  2 + b32) -] 1/2 (2.8) 

Note that O ~ 0 when b~, b3 ~ 0, as correct, since the ( + ) and ( - ) planes 
then degenerate into the plane y2 = 0. One can also write 

= "l-1~2-1-fl2fl 2~1/2 with flj=bj/b 2 (2.9) O(bl, b2, b3) tan ~(fll 2_ e 3 - -  1 3! 

Evidently one has 0 ~< O ~< r~/2. 
The intersection axis of the planes ( + )  and ( - )  is characterized by a 

unit vector 
=fi+^ fi_/sin 0 = t~(b] -1, b21, b31 ) (2.10) 

where 

blbzb3 ( ~ )-t/2 
= (b2b 2 + bZb 2 + h2~2~ 1/2 = b/-2 

U 3 ~ l !  i 1 

Next note that from the unit vector 

~ - a _  

(2.11) 

(2.12) 
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which is perpendicular to Z, we can construct a unit vector 

"b (b2,  bl bl b2) 
= ~ A ~ = (b1~_~?~),/2 \b3 b3' b2 ~ (2.13) 

orthogonal to Z and ~" and so lying in the ( - ) p l a n e .  Using this new 
orthonormal basis, we can introduce cylindrical coordinates (z, r, 0) via 

3 
z(x)=  ~ ~x/b  2 (2.14) 

j=l  

• Z ( r2(x)= ~j?-  = 1 - - - 2 ~  2 .-. (2.15) 
j =  i ~1 ~2 

tan O= b lb2b3(x2-x l )  (2.16) 
bl-b2(x3 - x2) + b~(x 3 - Xl) ] 

Finally, we can rewrite the basic diffusion equation (2.3) and the 
conditions (2.4)-(2.6) in cylindrical coordinates to obtain 

~?G(2, r, O) 1 [632G c32G 1 OG 1 632G'~ 
c3t = 2 ~-~z2 +-~r2 + r-~-r + ~ ~ )  (2.17) 

with - o o  < z <  oe, 0~<r< oe, and 

together with 

G--*0 

0~<0~O (2.18) 

as z ~ + o e ,  r-~0,  oe, or 0 ~ 0 ,  O (2.19) 

In other words, we have diffusion in an absorbing wedge with axis along 
the z axis and opening angle 0. 3 We want the corresponding Green's 
function for a unit point source located at (Zo, ro, 0o), which can be com- 
puted from the initial coordinates (xl,o, X2,o, X3.o) of the walkers on the line 
via (2.14)-(2.16). This is a standard but nontrivial problem in the theory of 
heat ,conduction. We will quote below the full solution in the form pre- 
sented by Carslaw and Jaeger. (6) However, it turns out that the asymp- 
totic features of most interest to us can be extracted by elementary means. 
Accordingly, we proceed in a straightforward fashion. 

3 Incidentally, the fact that 0 should not depend on the bj for only two dissimilar walkers is 
evident, following the transformation (2.2), in that the change of variables then leaves the 
boundary surface as a simple line with no intrinsic bpdependent  geometrical features, in 
contrast to the angle 0 in (2.8) for p = 3 walkers and further such angles for p > 3. 
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It is evident from (2.17) that the z motion separates off. Indeed, this 
coordinate, which, in essence, is just the center of mass of the three walkers 
on the line, diffuses freely. Thus, we have 

G(y, Yo; t )=  P(r, O; ro, 0o; t ) { e x p [ -  (z-Zo)2/2t] }/(2~rt) 1/2 (2.20) 

where P is the Green's function of the equation for diffusion in the planar 
wedge (0 ~< r < az, 0~< 0 ~< O). The angular part of this latter equation 
clearly has solutions of the form sin lvO which satisfy the boundary 
conditions (2.19) provided 

v = re/O, l =  1, 2 .... (2.21) 

Note that the inequality v~>2 follows from (2.9). On invoking the 
symmetry of the Green's function under interchange of y and Yo or of (r, 0) 
and (r0, 0o), we can thus write 

P(t) = ~ Rl(r, ro; t) sin IvO sin lvOo (2.22) 
l = l  

where Rt(r, ro; t) is a solution of 

OR 1 [02R 1 OR 12V z ) 
Ot--Z [--~r2 +r  Or rZ R (2.23) 

Now the homogeneity of this equation in r and t shows that the 
required Green's function is of the scaling form 

Rt(r, ro; t ) =  t-lUl(r/t 1/2, ro/t 1/2) (2.24) 

with U~(v, Vo)= Ut(vo, v). We may seek power-law solutions, 

Ul(15 , I)o) = 1) ~ ~ Ul,m(DO) 1) m ( 2 . 2 5 )  
m = 0  

which should be valid for small r (or large t as we desire). On substituting 
in (2.23), the indicial equation is found to be 

ff(~- 1)+ ~-12v2 = 0  or ~=lv (2.26) 

the solution - l v  being rejected, since it fails to satisfy (2.19) for r-+ 0. By 
(2.9) and (2.24) we now see that v and hence the decay exponent ~b will 
vary continuously with the bj. By the symmetry we must have 
Ut, o(Vo) ~ Ut.oV~ v as Vo --+ 0, where u~. o is a constant. Finally, taking l = 1, we 
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conclude that the asymptotic form of the full Green's function as t ~ 
with fixed r and r0, or, more generally, with r2/t, rut--+ O, is given by 

e x p [ - ( Z -  Zo)2/2t] ( ? )  ~/~ 
G(x, Xo; t) ~ Ul, 0 (2701/2 t3/2 

re0 rC0o 
x sin ~ sin -~-  (2.27) 

The correction factor to this result is easily seen to be E1 + O(rZ/t, r2/t)]. 
Our asymptotic analysis is checked by the exact solution of 

(2.17)-(2.19) given by Carslaw and Jaeger. (6) For the full distribution this 
yields our principal result 

Q(3)(x, Xo; t ) -  
4V(bl, b2, b3) 

(2rot) 3/2 

x exp[ - (0.1 + 0.2 + 0"3) t ]  exp [ 

~, / r ro \  
x Ilv ~--7-) sin(lvO)sin(lvOo) 

l=1 

(Z-Zo) 2 r 2+ro21 
2t ~ J 

(2.28) 

where, to recapitulate, v - ~/O(bl ,  b 2, b3) is given by (2.9), the coordinates 
(z, r, 0)(x) and (Zo, ro, 0o)(Xo) follow from (2.i4)-(2.16) with (2.11), while 
the modified Bessel function may be defined by 

L(w)= (�89 v (lw2)k/k! V ( v + k +  1) 
k=0 

(2.29) 

Comparison with (2.27) gives 

Ul,o = 21 vv/rcF(v + 1) (2.30) 

It is worth noting that the second exponential factor in (2.28) can be 
written symmetrically as 

 7,E1 2 2 
~2 3 (Xj 4- Xj'o~- 7 L XjXk'07 

exp -- \-~j_--~j / b2b2 j (2.31) 
"= j,k= 1 

with, by (2.11), B2= (~ j  bj-2)-l. It is also important to recall from (2.16) 
that 0 and 0o depend only on the interwalker spacings 

xjk = xk - xj, xj~,o = Xk,o - Xj, o (2.32) 
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respectively. The same is true for r and ro, since one finds 

X23 ~2 X12 r 2 X22..~._.~_ b (.-~-~ X23~ 2 
(2.33) 

and similarly for r 0. Furthermore,  when the initial and final spacings are 
the same, that is, 

xl - Xl,o = x2 - Xa,0 = x3 - X3,o = s (2.34) 

as in a symmetric reunion, one simply has 

z - z o = s  (2.35) 

This completes the derivation of the distribution function for three dis- 
similar vicious random walkers. In the next section we discuss the result 
and examine various special cases. 

3. R E U N I O N S  OF D I S S I M I L A R  W A L K E R S  

The general distribution function (2.28) enables one to answer any 
question about  three dissimilar vicious walkers (in the continuum limit). 
Consider, then, the probability of a reunion anywhere. To this end, (2.28) 
should be integrated over z at fixed x12 = x 2 - x l  and x 2 3 -  x 3 -  x2; this 
removes a factor t 1/2 from the denominator  and, with n = t, yields the 
power law (1.3) with exponent 

7~ 7~ 

0 3 = 1 + O  = l q  t a n - ~ r f  + + 2  2 2 2 b2b2"~l/2/b2 ~ (3.1) 
~ , b l b 2 - b 2 b 3 -  3 lJ I 2 

The amplitude, after normalization, is found to be 

2(rro/2 ) ~/~ r~O ~0o 
C3(x, Xo; bfl = OFE1 + (rc/O)] sin -~- sin ~9 (3.2) 

where, by (2.33) and (2.16), r and 0 depend only on the spacings x12 and 
x23 and likewise for r 0 and 00. 

The continuous variation of ~ 3 ( b l ,  b2, b3) is obvious from (3.1): non- 

integral values are generic. It is easy to check the various previously known 
special cases mentioned in the Introduction. In the symmetric situation 
bi = b 2 = b  3 one finds O=rc /3  and thus ~t3=4 as in I. The amplitude 
reduces to 

C3(b I = b 2 = b3) = X12X23X31 x12,0x23,0x31,0/a~b 6 (3.3) 
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which also checks I. Taking the limit b I --~ 0 and x I --* 0 yields a rigid wall 
at the origin plus two walkers at x2 and x3. For b 2 = b  3 one obtains 
O = 7r/4 and hence ~3 = 5 which, as mentioned, agrees with the exponent 
0 w found in I; similarly, the amplitud~ 

C3(b 1 - - ~  O ,  b2 = b3) X l Z X 1 3 X I 2 , 0 X 1 3 , 0 ( X 2 3  2 2 2 8 ~ -  - -  X 1 3 ) ( X 1 3 , 0  - -  x13,o)/3gb (3.4) 

agrees identically with the result in I. (In deriving this, one notices ~/bj-~ 1 
as b i ~  0 with b k > 0  for k C Z )  

Again, one can take b3 ~ 0 and x2 ~ 0 to obtain a thin, rigid wall at 
x2 = 0 with two dissimilar walkers, one at xl < 0 and one at x3 > 0, which 
must be quite independent of one another. This limit yields O = 7c/2 and so, 
as anticipated in the Introduction, one has 0 3 = 3 = 2  0~v. The 
corresponding amplitude is 

C3(b2 = 0) = 2x 1 xl,ox 3 X3,o/7~b 2 b 2 (3.5) 

which obligingly factorizes into two parts, each confirming the amplitude 
obtained in I for one walker near a wall! 

The value 0 3 ( b 2 = 0 ) = 3  is clearly the smallest value that can 
follow from (3.1). This answers the question posed in the Introduction: 
consequently, the direct unbinding of an interface A[lr D via fluctuations 
involving compound bubbles bounded by A IB and C[D interfaces and 
containing a B IC interface should always proceed via a first-order 
transition (see I). Nevertheless, a finite exponent 03 leads to nontrivial 
power-law corrections varying as ( T - T o )  03-1 in the interfacial energy on 
the bound side of the transition. (1) It should be mentioned, however, that a 
general treatment of the unbinding of an A !ll D interface should also allow 
for partial (and full) unbinding into the states A[I C ID and A ] B tl D, as well 
as into A[B[ C ID, as described by the simple p = 3 reunions. The full 
distribution Q(31(bl, b2, b3) given in (2.28), together with the distributions 
Q(2)(bl 2, b3) and Q(2~(bl, b23 ) following from (1.14) and (1.15), provide a 
basis for such a treatment. (In an obvious notation, b~2 and b23 are the 
diffusivities of the interfaces A N C and B ll D, respectively.) The problem is 
very complicated, since all sequences of intermediate states must be 
summed to construct the "basic bubble" on the AII D interface: it will not 
be attempted here. 

If one integrates Q(3)(x, Xo) over x23 and x2 with x12 (and Xo) fixed, 
one can calculate the probability of a partial reunion in which the first two 
walkers meet closely on the nth step while the third walker may be 
anywhere. These two integrations are equivalent to integrating (2.28) 
on z and on r~x23 ; this cancels factors t 1/2 and t ~/2+v/2 for ro/t l/z small. 
Hence, the partial reunion probability decays with an exponent 
02.1 = �89 + (n/O)]. A further integration over x~2 removes another factor 
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t 1/2 and leads to the decay law for the total weighted distribution; 
equivalently, the probability that all three vicious walkers survive for n 
steps varies as 

P(n3)(bl, b2, b3),-~ 1/tl =/20(&'b2,b3) (3.6) 

as n --+ oe. For three similar walkers (b~ = b2 = b3) this yields 1In 3/2, which 
agrees with the general result P(,P)(bj = b)..~ 1/n p(p- 1)/4 obtained in I. 

4. T H E  I N T E R M E D I A T E  F L U C T U A T I O N  R E G I M E  IN 
T W O - D I M E N S I O N A L  W E T T I N G  

Finally, it is worth commenting on the continuous variation of ~3(bj) 
in the light of a recent treatment of the critical wetting or unbinding 
transition in d =  2 dimensions by Lipowsky and Nieuwenhuizen (LN) (7) in 
the so-called intermediate fluctuation regime. Specifically, they address the 
case of an interface between two coexisting phases which interacts with a 
rigid wall via a long-range potential V(l) decaying as 1/IZ; this law is, in 
fact, marginal for the problem, i.e., on a borderline of critical behavior 
between the so-called weak and strong fluctuation regimes. (2'8) The model 
interface also experiences a short-range attractive interaction, the total LN 
potential being (7/ 

V(I)= +c~, l < 0  

= -Uo ,  0 < l < l o  

= Vo/l 2, l> lo  (4.1) 

In the cases of interest here, Uo, which may be regarded as controlled by 
the temperature T, is positive and, if sufficiently large, serves to bind the 
interface to the wall even when the long-range interaction is repulsive, i.e., 
Vo >0. LN discovered three subregimes of behavior. In subregime (C), 
which extends to large Vo, the unbinding transition displays the following 
features: 

(a) There is a finite latent heat, so that, by most definitions, the 
transition is f irst  order (1) (although LN do not actually make 
that characterization). 

(b) The gap in the spectrum of the transfer operator for fluctuations 
along the interface vanishes linearly as t - U o ( T ) - U c - - +  0 + .  
This would normally be taken as indicating a critical transition 
with a longitudinal correlation length {ll(T) diverging as 1/t vII 
with vii= 1. 

(c) The transverse correlation lengths defined via the moments 

{m i = < l - l - -  <l>]m> 1/m (4.2) 
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remain finite as t ~ 0 +  for m<mc(Vo), where 

(m C + 2) 2 = 1 + 8SVo/k 2 T 2 > 4 (4.3) 

However, when m > mc they diverge with exponents 

Y m  = (m - mc)/2m (4.4) 

which, evidently, vary continuously with Vo. 

To relate these observations to the problem of three vicious random 
walkers, we return to the (p = 3)-interface unbinding transition 
A IIID-~AtBIC[D discussed above. This was treated in I using a 
"necklace" model in which "beads" of partially unbound interface segments 
of fluctuating length n8 are represented by the reunions of three vicious 
walkers. The beads alternate with "string" segments of tightly bound or 
merged interface representing the microscopic A ]lID interface with a 
"bare," reduced tension ~Ao. As explained, the nature of the transition is 
controlled by the exponent 03. For  ~93 > 2, as found above, the free energy 
increment on the bound side of the transition varies with t oc ( T o w -  T)> 0 
a s  (1) 

A F _ F ( T ) _ Z ,  tot/kBT= _ ~ Akt~+Astr i+ ... (4.5) 
k = l  

with A1 >0.  (For integral 03 a factor In t appears in the As term. ~1~) 
Now, since A1 # 0, this result describes a first-order transition with a 

latent heat (proportional to A1): thus, feature (a) of the LN system has 
appeared. Furthermore, the singular correction which is controlled by 03 in 
(4.5) suggests the presence of some type of criticality and an associated 
diverging length scale. As explained in I, the___most direct definition of the 
longitudinal correlation length is via ~ll =n~  n/n/n/~8. This remains finite at 
t = 0, as expected for a first-order transition. However, if one considers the 
extended definition 

~ lp,q = t-- " P  /nqB,'I1/(P -- q) (4.6) 

one finds 4 a longitudinal correlation length divergence whenever 
P > q > ~3 - 1. The associated correlation exponent is readily found from I 
to be just 

V~,q = 1 (4.7) 

4 This  and  the o ther  results quo ted  be low follow, in the no ta t ion  of I, f rom the formula  

Fo r  p < 03 - 1 this  remains  finite as t ~ 0 + ; otherwise,  it d iverges  with exponen t  p - ~3 + 1. 
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Evidently, there is only a single divergent length scale corresponding 
precisely to feature (b) of the LN subregime (C). 

Lastly, one may enquire within the necklace model as to the transverse 
correlation lengths defined in (4.2). Since, as discussed in I, the transverse 
dimension of a single bead scales as n~/2, which is just the law of diffusion, 

- -  _ l  •  we expect ~ m  ~ •  ~ \'~B[~m/2]l/m! . On this basis one finds ~m ~ ~ t Vm, where v m 
given precisely by (4.4) provided one makes the identification 

me(V0) = 2r - 2 (4.8) 

Finally, therefore, features (a)-(c) of the LN interface-plus-wall system 
have been matched! 

How can the apparently close correspondence between the two models 
be understood? To this end, let us focus on the outermost walkers in a 
bead at separation x 1 3 - I  and average over the position of the middle 
walker, which we may suppose is unobservable. Then, along the lines 
argued in I or by other routes (see, e.g., ref. 2), one may conclude that the 
two outer vicious walkers continue to diffuse as before, but as though 
subject to an additional repulsive force, entropically generated by the 
invisible presence of the middle walker. This new effective force has a 
potential V(l)  decaying as Wo/ l  2 (as I ~  oo). The amplitude I470 depends 
continuously on the bj; however, it does not seem easy to calculate its 
functional form explicitly. 

The 1/l 2 variation is just that considered by Lipowsky and 
Nieuwenhuizen. (7) Furthermore, when l becomes small in the necklace 
model the three walkers merge into a single string segment; thus, the 
tension difference ~rA~--atot corresponds to the short-range attractive 
amplitude Uo in the LN system. As we saw in (4.3) and (4.4), the LN 
exponents depend continuously on Vo= Wo through mc(Vo).  Via the 
correspondence (4.8), therefore, we should now expect 03 to vary con- 
tinuously with Wo(bj); hence, the dependence of 03 on the bj is no longer 
so surprising! 

In conclusion, the continuous variation of r may be understood as an 
intimate reflection of the marginality of the 1/l 2 potential in interface 
unbinding in d =  2 dimensions. Since there must be a similar entropic 
repulsion varying asymptotically a s  1 / ( X p - - X l )  2 for any p~>3 vicious 
walkers, it seems likely that Op will depend continuously on the 
bj (j = 1 ..... p) for all p ~> 3. Explicit calculations for four or more dissimilar 
vicious walkers would serve to check this speculation. 
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